Files
pebble/platform/snowy/boot/src/drivers/stm32_common/i2c.c
2025-01-27 11:38:16 -08:00

773 lines
25 KiB
C

/*
* Copyright 2024 Google LLC
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "util/misc.h"
#include "drivers/i2c.h"
#include "drivers/periph_config.h"
#include "drivers/gpio.h"
#include "system/passert.h"
#include "system/logging.h"
#include "util/delay.h"
#include <inttypes.h>
#if defined(MICRO_FAMILY_STM32F2)
#include "stm32f2xx_gpio.h"
#include "stm32f2xx_rcc.h"
#include "stm32f2xx_i2c.h"
#elif defined(MICRO_FAMILY_STM32F4)
#include "stm32f4xx_gpio.h"
#include "stm32f4xx_rcc.h"
#include "stm32f4xx_i2c.h"
#include "drivers/pmic.h"
#endif
#define portBASE_TYPE int
#define pdFALSE 0
#define portEND_SWITCHING_ISR(expr) (void)(expr)
#define I2C_ERROR_TIMEOUT_MS (1000)
#define I2C_TIMEOUT_ATTEMPTS_MAX (2 * 1000 * 1000)
#define I2C_NORMAL_MODE_CLOCK_SPEED_MAX (100000)
#define I2C_NACK_COUNT_MAX (1000) // MFI NACKs while busy. We delay ~1ms between retries so this is approximately a 1s timeout
#define I2C_READ_WRITE_BIT (0x01)
typedef struct I2cTransfer {
uint8_t device_address;
bool read_not_write; //True for read, false for write
uint8_t register_address;
uint8_t size;
uint8_t idx;
uint8_t *data;
enum TransferState {
TRANSFER_STATE_WRITE_ADDRESS_TX,
TRANSFER_STATE_WRITE_REG_ADDRESS,
TRANSFER_STATE_REPEAT_START,
TRANSFER_STATE_WRITE_ADDRESS_RX,
TRANSFER_STATE_WAIT_FOR_DATA,
TRANSFER_STATE_READ_DATA,
TRANSFER_STATE_WRITE_DATA,
TRANSFER_STATE_END_WRITE,
TRANSFER_STATE_INVALID,
} state;
bool result;
uint16_t nack_count;
}I2cTransfer;
typedef struct I2cBus{
I2C_TypeDef *i2c;
uint8_t user_count;
I2cTransfer transfer;
volatile bool busy;
}I2cBus;
static I2cBus i2c_buses[BOARD_I2C_BUS_COUNT];
static uint32_t s_guard_events[] = {
I2C_EVENT_MASTER_MODE_SELECT,
I2C_EVENT_MASTER_TRANSMITTER_MODE_SELECTED,
I2C_EVENT_MASTER_BYTE_TRANSMITTED,
I2C_EVENT_MASTER_MODE_SELECT,
I2C_EVENT_MASTER_RECEIVER_MODE_SELECTED,
I2C_EVENT_MASTER_BYTE_RECEIVED,
I2C_EVENT_MASTER_BYTE_TRANSMITTING,
I2C_EVENT_MASTER_BYTE_TRANSMITTED,
};
static bool s_initialized = false;
/*----------------SEMAPHORE/LOCKING FUNCTIONS--------------------------*/
static void bus_lock(I2cBus *bus) {
}
static void bus_unlock(I2cBus *bus) {
}
static bool semaphore_take(I2cBus *bus) {
return true;
}
static bool semaphore_wait(I2cBus *bus) {
bus->busy = true;
volatile uint32_t timeout_attempts = I2C_TIMEOUT_ATTEMPTS_MAX;
while ((timeout_attempts-- > 0) && (bus->busy));
bus->busy = false;
return (timeout_attempts != 0);
}
static void semaphore_give(I2cBus *bus) {
}
/*-------------------BUS/PIN CONFIG FUNCTIONS--------------------------*/
//! Configure bus power supply control pin as output
//! Lock bus and peripheral config access before configuring pins
void i2c_bus_rail_ctl_config(OutputConfig pin_config) {
gpio_use(pin_config.gpio);
GPIO_InitTypeDef GPIO_InitStructure;
GPIO_StructInit(&GPIO_InitStructure);
GPIO_InitStructure.GPIO_Pin = pin_config.gpio_pin;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_OUT;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_2MHz;
GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL;
GPIO_Init(pin_config.gpio, &GPIO_InitStructure);
gpio_release(pin_config.gpio);
}
//! Configure bus pins for use by I2C peripheral
//! Lock bus and peripheral config access before configuring pins
static void bus_pin_cfg_i2c(AfConfig pin_config) {
gpio_use(pin_config.gpio);
GPIO_InitTypeDef gpio_init_struct;
gpio_init_struct.GPIO_Pin = pin_config.gpio_pin;
gpio_init_struct.GPIO_Mode = GPIO_Mode_AF;
gpio_init_struct.GPIO_Speed = GPIO_Speed_50MHz;
gpio_init_struct.GPIO_OType = GPIO_OType_OD;
gpio_init_struct.GPIO_PuPd = GPIO_PuPd_NOPULL;
GPIO_Init(pin_config.gpio, &gpio_init_struct);
GPIO_PinAFConfig(pin_config.gpio, pin_config.gpio_pin_source, pin_config.gpio_af);
gpio_release(pin_config.gpio);
}
//! Configure bus pin as input
//! Lock bus and peripheral config access before use
static void bus_pin_cfg_input(AfConfig pin_config) {
gpio_use(pin_config.gpio);
// Configure pin as high impedance input
GPIO_InitTypeDef gpio_init_struct;
gpio_init_struct.GPIO_Pin = pin_config.gpio_pin;
gpio_init_struct.GPIO_Mode = GPIO_Mode_IN;
gpio_init_struct.GPIO_Speed = GPIO_Speed_2MHz;
gpio_init_struct.GPIO_PuPd = GPIO_PuPd_NOPULL;
GPIO_Init(pin_config.gpio, &gpio_init_struct);
gpio_release(pin_config.gpio);
}
//! Configure bus pin as output
//! Lock bus and peripheral config access before use
static void bus_pin_cfg_output(AfConfig pin_config, bool pin_state) {
gpio_use(pin_config.gpio);
// Configure pin as output
GPIO_InitTypeDef gpio_init_struct;
gpio_init_struct.GPIO_Pin = pin_config.gpio_pin;
gpio_init_struct.GPIO_Mode = GPIO_Mode_OUT;
gpio_init_struct.GPIO_Speed = GPIO_Speed_2MHz;
gpio_init_struct.GPIO_PuPd = GPIO_PuPd_NOPULL;
GPIO_Init(pin_config.gpio, &gpio_init_struct);
// Set bit high or low
GPIO_WriteBit(pin_config.gpio, pin_config.gpio_pin, (pin_state) ? Bit_SET : Bit_RESET);
gpio_release(pin_config.gpio);
}
//! Power down I2C bus power supply
//! Always lock bus and peripheral config access before use
static void bus_rail_power_down(uint8_t bus_idx) {
if (BOARD_CONFIG.i2c_bus_configs[bus_idx].rail_ctl_fn == NULL) {
return;
}
BOARD_CONFIG.i2c_bus_configs[bus_idx].rail_ctl_fn(false);
// Drain through pull-ups
bus_pin_cfg_output(BOARD_CONFIG.i2c_bus_configs[bus_idx].i2c_scl, false);
bus_pin_cfg_output(BOARD_CONFIG.i2c_bus_configs[bus_idx].i2c_sda, false);
}
//! Power up I2C bus power supply
//! Always lock bus and peripheral config access before use
static void bus_rail_power_up(uint8_t bus_idx) {
if (BOARD_CONFIG.i2c_bus_configs[bus_idx].rail_ctl_fn == NULL) {
return;
}
// check that at least enough time has elapsed since the last turn-off
// TODO: is this necessary in bootloader?
static const uint32_t MIN_STOP_TIME_MS = 10;
delay_ms(MIN_STOP_TIME_MS);
bus_pin_cfg_input(BOARD_CONFIG.i2c_bus_configs[bus_idx].i2c_scl);
bus_pin_cfg_input(BOARD_CONFIG.i2c_bus_configs[bus_idx].i2c_sda);
BOARD_CONFIG.i2c_bus_configs[bus_idx].rail_ctl_fn(true);
}
//! Initialize the I2C peripheral
//! Lock the bus and peripheral config access before initialization
static void bus_init(uint8_t bus_idx) {
// Initialize peripheral
I2C_InitTypeDef i2c_init_struct;
I2C_StructInit(&i2c_init_struct);
if (BOARD_CONFIG.i2c_bus_configs[bus_idx].clock_speed > I2C_NORMAL_MODE_CLOCK_SPEED_MAX) { //Fast mode
i2c_init_struct.I2C_DutyCycle = BOARD_CONFIG.i2c_bus_configs[bus_idx].duty_cycle;
}
i2c_init_struct.I2C_ClockSpeed = BOARD_CONFIG.i2c_bus_configs[bus_idx].clock_speed;
i2c_init_struct.I2C_Ack = I2C_Ack_Enable;
I2C_Init(i2c_buses[bus_idx].i2c, &i2c_init_struct);
I2C_Cmd(i2c_buses[bus_idx].i2c, ENABLE);
}
//! Configure the bus pins, enable the peripheral clock and initialize the I2C peripheral.
//! Always lock the bus and peripheral config access before enabling it
static void bus_enable(uint8_t bus_idx) {
// Don't power up rail if the bus is already in use (enable can be called to reset bus)
if (i2c_buses[bus_idx].user_count == 0) {
bus_rail_power_up(bus_idx);
}
bus_pin_cfg_i2c(BOARD_CONFIG.i2c_bus_configs[bus_idx].i2c_scl);
bus_pin_cfg_i2c(BOARD_CONFIG.i2c_bus_configs[bus_idx].i2c_sda);
// Enable peripheral clock
periph_config_acquire_lock();
periph_config_enable(RCC_APB1PeriphClockCmd, BOARD_CONFIG.i2c_bus_configs[bus_idx].clock_ctrl);
periph_config_release_lock();
bus_init(bus_idx);
}
//! De-initialize and gate the clock to the peripheral
//! Power down rail if the bus supports that and no devices are using it
//! Always lock the bus and peripheral config access before disabling it
static void bus_disable(uint8_t bus_idx) {
I2C_DeInit(i2c_buses[bus_idx].i2c);
periph_config_acquire_lock();
periph_config_disable(RCC_APB1PeriphClockCmd, BOARD_CONFIG.i2c_bus_configs[bus_idx].clock_ctrl);
periph_config_release_lock();
// Do not de-power rail if there are still devices using bus (just reset peripheral and pin configuration during a bus reset)
if (i2c_buses[bus_idx].user_count == 0) {
bus_rail_power_down(bus_idx);
}
else {
bus_pin_cfg_input(BOARD_CONFIG.i2c_bus_configs[bus_idx].i2c_scl);
bus_pin_cfg_input(BOARD_CONFIG.i2c_bus_configs[bus_idx].i2c_sda);
}
}
//! Perform a soft reset of the bus
//! Always lock the bus before reset
static void bus_reset(uint8_t bus_idx) {
bus_disable(bus_idx);
bus_enable(bus_idx);
}
/*---------------INIT/USE/RELEASE/RESET FUNCTIONS----------------------*/
void i2c_init(void) {
for (uint32_t i = 0; i < ARRAY_LENGTH(i2c_buses); i++) {
i2c_buses[i].i2c = BOARD_CONFIG.i2c_bus_configs[i].i2c;
i2c_buses[i].user_count = 0;
i2c_buses[i].busy = false;
i2c_buses[i].transfer.idx = 0;
i2c_buses[i].transfer.size = 0;
i2c_buses[i].transfer.data = NULL;
i2c_buses[i].transfer.state = TRANSFER_STATE_INVALID;
NVIC_InitTypeDef NVIC_InitStructure;
NVIC_InitStructure.NVIC_IRQChannel = BOARD_CONFIG.i2c_bus_configs[i].ev_irq_channel;
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0x0c;
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0x00;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVIC_InitStructure);
NVIC_InitStructure.NVIC_IRQChannel = BOARD_CONFIG.i2c_bus_configs[i].er_irq_channel;
NVIC_Init(&NVIC_InitStructure);
I2C_DeInit(i2c_buses[i].i2c);
}
s_initialized = true;
for (uint32_t i = 0; i < ARRAY_LENGTH(i2c_buses); i++) {
if (BOARD_CONFIG.i2c_bus_configs[i].rail_cfg_fn) {
BOARD_CONFIG.i2c_bus_configs[i].rail_cfg_fn();
}
if (BOARD_CONFIG.i2c_bus_configs[i].rail_ctl_fn) {
bus_rail_power_down(i);
}
}
}
void i2c_use(I2cDevice device_id) {
PBL_ASSERTN(s_initialized);
PBL_ASSERT(device_id < BOARD_CONFIG.i2c_device_count, "I2C device ID out of bounds %d (max: %d)",
device_id, BOARD_CONFIG.i2c_device_count);
uint8_t bus_idx = BOARD_CONFIG.i2c_device_map[device_id];
I2cBus *bus = &i2c_buses[bus_idx];
bus_lock(bus);
if (bus->user_count == 0) {
bus_enable(bus_idx);
}
bus->user_count++;
bus_unlock(bus);
}
void i2c_release(I2cDevice device_id) {
PBL_ASSERTN(s_initialized);
PBL_ASSERTN(device_id < BOARD_CONFIG.i2c_device_count);
uint8_t bus_idx = BOARD_CONFIG.i2c_device_map[device_id];
I2cBus *bus = &i2c_buses[bus_idx];
bus_lock(bus);
if (bus->user_count == 0) {
PBL_LOG(LOG_LEVEL_ERROR, "Attempted release of disabled bus %d by device %d", bus_idx, device_id);
bus_unlock(bus);
return;
}
bus->user_count--;
if (bus->user_count == 0) {
bus_disable(bus_idx);
}
bus_unlock(bus);
}
void i2c_reset(I2cDevice device_id) {
PBL_ASSERTN(s_initialized);
PBL_ASSERTN(device_id < BOARD_CONFIG.i2c_device_count);
uint8_t bus_idx = BOARD_CONFIG.i2c_device_map[device_id];
I2cBus *bus = &i2c_buses[bus_idx];
// Take control of bus; only one task may use bus at a time
bus_lock(bus);
if (bus->user_count == 0) {
PBL_LOG(LOG_LEVEL_ERROR, "Attempted reset of disabled bus %d by device %d", bus_idx, device_id);
bus_unlock(bus);
return;
}
PBL_LOG(LOG_LEVEL_WARNING, "Resetting I2C bus %" PRId8, bus_idx);
// decrement user count for reset so that if this user is the only user, the
// bus will be powered down during the reset
bus->user_count--;
// Reset and reconfigure bus and pins
bus_reset(bus_idx);
//Restore user count
bus->user_count++;
bus_unlock(bus);
}
/*--------------------DATA TRANSFER FUNCTIONS--------------------------*/
//! Wait a short amount of time for busy bit to clear
static bool wait_for_busy_clear(uint8_t bus_idx) {
unsigned int attempts = I2C_TIMEOUT_ATTEMPTS_MAX;
while((i2c_buses[bus_idx].i2c->SR2 & I2C_SR2_BUSY) != 0) {
--attempts;
if (!attempts) {
return false;
}
}
return true;
}
//! Abort the transfer
//! Should only be called when the bus is locked
static void abort_transfer(I2cBus *bus) {
// Disable all interrupts on the bus
bus->i2c->CR2 &= ~(I2C_CR2_ITEVTEN | I2C_CR2_ITERREN | I2C_CR2_ITBUFEN);
// Generate a stop condition
bus->i2c->CR1 |= I2C_CR1_STOP;
bus->transfer.state = TRANSFER_STATE_INVALID;
}
//! Set up and start a transfer to a device, wait for it to finish and clean up after the transfer has completed
static bool do_transfer(I2cDevice device_id, bool read_not_write, uint8_t device_address, uint8_t register_address, uint8_t size, uint8_t *data) {
PBL_ASSERTN(s_initialized);
PBL_ASSERTN(device_id < BOARD_CONFIG.i2c_device_count);
uint8_t bus_idx = BOARD_CONFIG.i2c_device_map[device_id];
I2cBus *bus = &i2c_buses[bus_idx];
// Take control of bus; only one task may use bus at a time
bus_lock(bus);
if (bus->user_count == 0) {
PBL_LOG(LOG_LEVEL_ERROR, "Attempted access to disabled bus %d by device %d", bus_idx, device_id);
bus_unlock(bus);
return false;
}
// If bus is busy (it shouldn't be as this function waits for the bus to report a non-idle state
// before exiting) reset the bus and wait for it to become not-busy
// Exit if bus remains busy. User module should reset the I2C module at this point
if((bus->i2c->SR2 & I2C_SR2_BUSY) != 0) {
bus_reset(bus_idx);
if (!wait_for_busy_clear(bus_idx)) {
// Bus did not recover after reset
bus_unlock(bus);
return false;
}
}
// Take binary semaphore so that next take will block
PBL_ASSERT(semaphore_take(bus), "Could not acquire semaphore token");
// Set up transfer
bus->transfer.device_address = device_address;
bus->transfer.register_address = register_address;
bus->transfer.read_not_write = read_not_write;
bus->transfer.size = size;
bus->transfer.idx = 0;
bus->transfer.state = TRANSFER_STATE_WRITE_ADDRESS_TX;
bus->transfer.data = data;
bus->transfer.nack_count = 0;
// Ack received bytes
I2C_AcknowledgeConfig(bus->i2c, ENABLE);
bool result = false;
do {
// Generate start event
bus->i2c->CR1 |= I2C_CR1_START;
//Enable event and error interrupts
bus->i2c->CR2 |= I2C_CR2_ITEVTEN | I2C_CR2_ITERREN;
// Wait on semaphore until it is released by interrupt or a timeout occurs
if (semaphore_wait(bus)) {
if (bus->transfer.state == TRANSFER_STATE_INVALID) {
// Transfer is complete
result = bus->transfer.result;
if (!result) {
PBL_LOG(LOG_LEVEL_ERROR, "I2C Error on bus %" PRId8, bus_idx);
}
} else if (bus->transfer.nack_count < I2C_NACK_COUNT_MAX) {
// NACK received after start condition sent: the MFI chip NACKs start conditions whilst it is busy
// Retry start condition after a short delay.
// A NACK count is incremented for each NACK received, so that legitimate NACK
// errors cause the transfer to be aborted (after the NACK count max has been reached).
bus->transfer.nack_count++;
delay_ms(1);
} else {
// Too many NACKs received, abort transfer
abort_transfer(bus);
break;
PBL_LOG(LOG_LEVEL_ERROR, "I2C Error: too many NACKs received on bus %" PRId8, bus_idx);
}
} else {
// Timeout, abort transfer
abort_transfer(bus);
break;
PBL_LOG(LOG_LEVEL_ERROR, "Transfer timed out on bus %" PRId8, bus_idx);
}
} while (bus->transfer.state != TRANSFER_STATE_INVALID);
// Return semaphore token so another transfer can be started
semaphore_give(bus);
// Wait for bus to to clear the busy flag before a new transfer starts
// Theoretically a transfer could complete successfully, but the busy flag never clears,
// which would cause the next transfer to fail
if (!wait_for_busy_clear(bus_idx)) {
// Reset I2C bus if busy flag does not clear
bus_reset(bus_idx);
}
bus_unlock(bus);
return result;
}
bool i2c_read_register(I2cDevice device_id, uint8_t i2c_device_address, uint8_t register_address, uint8_t *result) {
return i2c_read_register_block(device_id, i2c_device_address, register_address, 1, result);
}
bool i2c_read_register_block(I2cDevice device_id, uint8_t i2c_device_address, uint8_t
register_address_start, uint8_t read_size, uint8_t* result_buffer) {
#if defined(TARGET_QEMU)
PBL_LOG(LOG_LEVEL_DEBUG, "i2c reads on QEMU not supported");
return false;
#endif
// Do transfer locks the bus
bool result = do_transfer(device_id, true, i2c_device_address, register_address_start, read_size, result_buffer);
if (!result) {
PBL_LOG(LOG_LEVEL_ERROR, "Read failed on bus %" PRId8, BOARD_CONFIG.i2c_device_map[device_id]);
}
return result;
}
bool i2c_write_register(I2cDevice device_id, uint8_t i2c_device_address, uint8_t register_address,
uint8_t value) {
return i2c_write_register_block(device_id, i2c_device_address, register_address, 1, &value);
}
bool i2c_write_register_block(I2cDevice device_id, uint8_t i2c_device_address, uint8_t
register_address_start, uint8_t write_size, const uint8_t* buffer) {
#if defined(TARGET_QEMU)
PBL_LOG(LOG_LEVEL_DEBUG, "i2c writes on QEMU not supported");
return false;
#endif
// Do transfer locks the bus
bool result = do_transfer(device_id, false, i2c_device_address, register_address_start, write_size, (uint8_t*)buffer);
if (!result) {
PBL_LOG(LOG_LEVEL_ERROR, "Write failed on bus %" PRId8, BOARD_CONFIG.i2c_device_map[device_id]);
}
return result;
}
/*------------------------INTERRUPT FUNCTIONS--------------------------*/
//! End a transfer and disable further interrupts
//! Only call from interrupt functions
static portBASE_TYPE end_transfer_irq(I2cBus *bus, bool result) {
bus->i2c->CR2 &= ~(I2C_CR2_ITEVTEN | I2C_CR2_ITERREN | I2C_CR2_ITBUFEN);
bus->i2c->CR1 |= I2C_CR1_STOP;
bus->transfer.result = result;
bus->transfer.state = TRANSFER_STATE_INVALID;
bus->busy = false;
return pdFALSE;
}
//! Pause a transfer, disabling interrupts during the pause
//! Only call from interrupt functions
static portBASE_TYPE pause_transfer_irq(I2cBus *bus) {
bus->i2c->CR2 &= ~(I2C_CR2_ITEVTEN | I2C_CR2_ITERREN | I2C_CR2_ITBUFEN);
bus->busy = false;
return pdFALSE;
}
//! Handle an IRQ event on the specified \a bus
static portBASE_TYPE irq_event_handler(I2cBus *bus) {
if (bus->transfer.state == TRANSFER_STATE_INVALID) {
// Disable interrupts if spurious interrupt received
bus->i2c->CR2 &= ~(I2C_CR2_ITEVTEN | I2C_CR2_ITBUFEN);
return pdFALSE;
}
// Check that the expected event occurred
if (I2C_CheckEvent(bus->i2c, s_guard_events[bus->transfer.state]) == ERROR) {
// Ignore interrupt - A spurious byte transmitted event as well as an interrupt with no
// discernible event associated with it occur after repeat start events are generated
return pdFALSE;
}
portBASE_TYPE should_context_switch = pdFALSE;
switch (bus->transfer.state) {
case TRANSFER_STATE_WRITE_ADDRESS_TX:
// Write the i2c device address to the bus to select it in write mode.
bus->i2c->DR = bus->transfer.device_address & ~I2C_READ_WRITE_BIT;
bus->transfer.state = TRANSFER_STATE_WRITE_REG_ADDRESS;
break;
case TRANSFER_STATE_WRITE_REG_ADDRESS:
// Write the register address
bus->i2c->DR = bus->transfer.register_address;
if (bus->transfer.read_not_write) {
bus->transfer.state = TRANSFER_STATE_REPEAT_START;
} else {
// Enable TXE interrupt for writing
bus->i2c->CR2 |= I2C_CR2_ITBUFEN;
bus->transfer.state = TRANSFER_STATE_WRITE_DATA;
}
break;
case TRANSFER_STATE_REPEAT_START:
// Generate a repeat start
bus->i2c->CR1 |= I2C_CR1_START;
bus->transfer.state = TRANSFER_STATE_WRITE_ADDRESS_RX;
break;
case TRANSFER_STATE_WRITE_ADDRESS_RX:
// Write the I2C device address again, but this time in read mode.
bus->i2c->DR = bus->transfer.device_address | I2C_READ_WRITE_BIT;
if (bus->transfer.size == 1) {
// Last byte, we want to NACK this one to tell the slave to stop sending us bytes.
bus->i2c->CR1 &= ~I2C_CR1_ACK;
}
bus->transfer.state = TRANSFER_STATE_WAIT_FOR_DATA;
break;
case TRANSFER_STATE_WAIT_FOR_DATA:
//This state just ensures that the transition to receive mode event happened
// Enable RXNE interrupt for writing
bus->i2c->CR2 |= I2C_CR2_ITBUFEN;
bus->transfer.state = TRANSFER_STATE_READ_DATA;
break;
case TRANSFER_STATE_READ_DATA:
bus->transfer.data[bus->transfer.idx] = bus->i2c->DR;
bus->transfer.idx++;
if (bus->transfer.idx + 1 == bus->transfer.size) {
// Last byte, we want to NACK this one to tell the slave to stop sending us bytes.
bus->i2c->CR1 &= ~I2C_CR1_ACK;
}
else if (bus->transfer.idx == bus->transfer.size) {
// End transfer after all bytes have been received
bus->i2c->CR2 &= ~I2C_CR2_ITBUFEN;
should_context_switch = end_transfer_irq(bus, true);
break;
}
break;
case TRANSFER_STATE_WRITE_DATA:
bus->i2c->DR = bus->transfer.data[bus->transfer.idx];
bus->transfer.idx++;
if (bus->transfer.idx == bus->transfer.size) {
bus->i2c->CR2 &= ~I2C_CR2_ITBUFEN;
bus->transfer.state = TRANSFER_STATE_END_WRITE;
break;
}
break;
case TRANSFER_STATE_END_WRITE:
// End transfer after all bytes have been sent
should_context_switch = end_transfer_irq(bus, true);
break;
default:
// Abort transfer from invalid state - should never reach here (state machine logic broken)
should_context_switch = end_transfer_irq(bus, false);
break;
}
return should_context_switch;
}
//! Handle error interrupt on the specified \a bus
static portBASE_TYPE irq_error_handler(I2cBus *bus) {
if (bus->transfer.state == TRANSFER_STATE_INVALID) {
// Disable interrupts if spurious interrupt received
bus->i2c->CR2 &= ~I2C_CR2_ITERREN;
return pdFALSE;
}
// Data overrun and bus errors can only really be handled by terminating the transfer and
// trying to recover bus to an idle state. Each error will be logged. In each case a stop
// condition will be sent and then we will wait on the busy flag to clear (if it doesn't,
// a soft reset of the bus will be performed (handled in wait i2c_do_transfer).
if ((bus->i2c->SR1 & I2C_SR1_OVR) != 0) {
bus->i2c->SR1 &= ~I2C_SR1_OVR;
// Data overrun
PBL_LOG(LOG_LEVEL_ERROR, "Data overrun during I2C transaction; Bus: 0x%p", bus->i2c);
}
if ((bus->i2c->SR1 & I2C_SR1_BERR) != 0) {
bus->i2c->SR1 &= ~I2C_SR1_BERR;
// Bus error: invalid start or stop condition detected
PBL_LOG(LOG_LEVEL_ERROR, "Bus error detected during I2C transaction; Bus: 0x%p", bus->i2c);
}
if ((bus->i2c->SR1 & I2C_SR1_AF) != 0) {
bus->i2c->SR1 &= ~I2C_SR1_AF;
// NACK received.
//
// The MFI chip will cause NACK errors during read operations after writing a start bit (first start
// or repeat start indicating that it is busy. The transfer must be paused and the start condition sent
// again after a delay and the state machine set back a step.
//
// If the NACK is received after any other action log an error and abort the transfer
if (bus->transfer.state == TRANSFER_STATE_WAIT_FOR_DATA) {
bus->transfer.state = TRANSFER_STATE_WRITE_ADDRESS_RX;
return pause_transfer_irq(bus);
}
else if (bus->transfer.state == TRANSFER_STATE_WRITE_REG_ADDRESS){
bus->transfer.state = TRANSFER_STATE_WRITE_ADDRESS_TX;
return pause_transfer_irq(bus);
}
else {
PBL_LOG(LOG_LEVEL_ERROR, "NACK received during I2C transfer; Bus: 0x%p", bus->i2c);
}
}
return end_transfer_irq(bus, false);
}
void I2C1_EV_IRQHandler(void) {
portEND_SWITCHING_ISR(irq_event_handler(&i2c_buses[0]));
}
void I2C1_ER_IRQHandler(void) {
portEND_SWITCHING_ISR(irq_error_handler(&i2c_buses[0]));
}
void I2C2_EV_IRQHandler(void) {
portEND_SWITCHING_ISR(irq_event_handler(&i2c_buses[1]));
}
void I2C2_ER_IRQHandler(void) {
portEND_SWITCHING_ISR(irq_error_handler(&i2c_buses[1]));
}
/*------------------------COMMAND FUNCTIONS--------------------------*/
void command_power_2v5(char *arg) {
// Intentionally ignore the s_running_count and make it so!
// This is intended for low level electrical test only
if(!strcmp("on", arg)) {
bus_rail_power_up(1);
} else {
bus_rail_power_down(1);
}
}